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Abstract

\

A secure digital multiplexing technique is presented which uses a
pseudo-random process with a fundamental cycle length N. The method
éan handle D < N signal sequences of length M < N. The SNR's of the
de-multiplexed signals is N/4DM for large N, even if the additive noise

power is large. The de-multiplexer must compute the discrete Fourier

transform of the pseudo-random sequence that is used to encode the signals.

Information is carried in the phase differences between the frequency
components of the multiplexed signal. De-multiplexing requires at least

m
DHNlogzN arithmetic calculations.

\

This work was supported by the Office of Naval Research under contract.
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Quadratic Multiplexing--A New Method for Secure Communication

Melvin J. Hinich
Virginia Polytechnic Institute and State University

Introduction

This paper presents an information coding technique that increases
the channel capacity of a communication link. This technique can be
used with any reliable system for transmitting information from origin
to destination. For a computer to computer transmission link, for example,
a number of messages are combined into a signal which is transmitted
by standard high frequency methods to a receiver which demodulates the
signal into a replica of the original multiplexed signal. This signal
is then unscrambled to yield the individual messages.

The increase in channel capacity results from information which is
] carried in the phase differences between frequency components of the
broadband multiplexed signal, and thus the technique is inherently
nonlinear.

Information is encoded using a cyclic pseudo-random process.
The receiver must generate the same pseudo-random process that is used

for encoding, making the technique secure from unauthorized interception.

I will now discuss the pseudo-random process before going into details

about signal processing.

1. A Discrete Pseudo-random Process

I will limit my exposition to discrete time processes and digital
signal processing. The analogies with a continuous time system are

straightforward.
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Let {x(tn)} denote a discrete pseudo~random white noise process.
The time index tn = nf;l, where n is an integer and fs is the sampling
frequency. Algorithms for generating sequences which appear to be
random and uncorrelated are well known by now (for an example see

Kronmal [1]). These algorithms produce sequences of numbers which

satisfy the statistical properties of a stationary white noise process.

One of the most widely used algorithms, the congruential generator,
produces sequences that obey a uniform density on the (0,1) interval,
although it has a fundamental period which is determined by the bit
length of the computer registers, and the 'seed" value used in the
algorithm.

It will simplify the Fourier transform mathematics if {x(tn)} is
periodic. Let N denote the fundamental cycle length, and thus
x(tn) = i(tn+N) for all n. This cycle can be set by suitable choice of
bit length, or by re-initializing the generator at n = N using the
same seed value.

From here on, the x(tn) values will be treated as if they were
realizations from a finite variance stationary white noise process,
where for simplicity the expected value Ex(tn) = 0 for all n.l That is,
for all n Ex(tn + r)x(tn) =0 for 1t # 0 (1 an 1ntgger multiple of f;I)
and Exz(tn) = a:.

Define the discrete Fourier transform

N-1
X(f) = ngo x(t )exp(~i2nft ) . )
The principal domain of X(f) is the band 0 < f < f_ . Then it follows

that for each n = 0,1,...,N=1

[ S ——
§
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1 N-1
xc ) =5 “2_;0 X(f )exp(i2nf t ), (2)

where fk = (kIN)fs are equally spaced discrete frequencies. Moreover
X(fk) = x*(fN-k) where the star denotes complex conjugate, and X(f-k)

= X*(f Since Ex(tn) = 0, Ex(fk) = 0.

K
The following three properties can easily be derived from the
assumption that {x(tn)} is white. For each k = 0,1,...,N-1

1) Rex(fk) and Imx(fk) are uncorrelated,

2 2
2) The variance of X(f ) is Elx(fk)l = No_,
3) X(fk) and x(fz) are uncorrelated for k ¥ £.
In addition, from the central limit theorem

4) {X(fk):k = 0,...,N-1} have a complex Gaussian joint distribution
in the limit as N + », For a discussion of the complex Gaussian

distribution, see Brillinger ([2].

2. Multiplexing The Signals

Suppose that D digitized signals of duration Mf;I are to be
multiplexed and transmitted. In order to simplify notation, let the
time unit be the sampling interval f;l, and supress the unit by setting
t, ~no for each n. Denote the D as follows: (31(0)...., al(M-l)},...,
{aD(O),...,aD(M-l)}. Assuming that D and M<N, each a, signal is
convolved with the lagged product sequence {o;zx(n)x(n-d)}. These con-

volutions are summed to form the quadratic multiplexed signal (Figure 1).

M-1 o
y(n) = i% ) a,(@o_“x(n-m)x(n-m-d). (4)
d=1 m=0
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The signal {y(n)} is used to modulate a high frequency carrier.

This

modulated signal is then transmitted to receivers which have the same

pseudo-random generator that is used to multiplex the signals.

Taking the Fourier transform of (4), we have

2 -1 o
Y(£) = o Ay (£ N goo" X(F, _p)exp (~127f 4d),

k
where fk =N for k =0, 1,..., N~1; and

M-1
Ay(£) = Y a (m)exp(~i27f, m)
m=0

are the Fourier transforms of the signals. If prior to digitizing all

(5)

(6)

the signals were bandlimited at fo’ there is no aliasing if e 2fo

and the quadratic multiplexed signal will then have the same bandwidth

as all the original signals.

For certain applications, such as speech transmission, it will be

better to set M = N and use a much higher sampling rate than fo’ i.e.

fs>>fo' At the receiver end, the de-multiplexed signals must be smoothed

by a low pass filter of bandwidth fo in order to have a high output

SNR.

In order to facilitate the statistical analysis of the de-multiplexing
technique, conceive of the signals as realizations from independent (zero

mean) white Gaussian noise processes with equal variances. Let o: denote

the signal variance (power).

3. De~multiplexing the Received Signal

Suppose that the receiver digitizes the high frequency version of

the multiplexed signal, yielding a time compressed y signal plus noise

[t s




denoted by p(n) = y(n) + €(n). Once again the time unit is supressed, but
this unit is much smaller than the original sampling interval f;l when the
signal is time compressed.

In the frequency domain, P(fk) = Y(fk) + e(fk), where {e(fk)} is
the Fourier transform of the noise. Even when N is large, the P(fk)
values can be computed in a short time by using an IC module programmed
with the FFT algorithm.

The receiver must have either the pseudo-random sequence {x(n)},
or its Fourier transform. Suppose that the receiver generates the un-
synchronized sequence {x(n + 1)}, where 1t is an unknown shift. It will
now be shown that the signals, delayed by t units, can be extracted with
a high SNR ratio when N/DM>>1.

Denote the Fourier transform of {x(n + 1)} by xr(fk)' Clearly

xt(f) = X(f) exp i2nft. Next define the weight function for each d

and k,
g N1
Wy (k)= (o, ) jz-:O X (£X (£, _exp(-12n£.d). (7)

As is shown in Theorem 2 (Appendix), for each m = 0,..., M -1

N-1
8y(m) = N1 égs Hd(k)P*(fk)exp(-12ﬂfkm) (8)

= ad(m-t) + € 9)

kl
-1 e, 2
where the €, are approximately uncorrelated Gaussian N(0,4N (DMOa+0€)).
In other words, the double Fourier transform of the array
~3 =2
N "o X(fj)X(fk-j K
N/4DM when cZ<<N. The NxN array is transformed using two successive

YP*(f )} extracts the D signals with an output SNR of
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FFT's to yield an DxN array whose dth row is ad(m). WhenDM<N, the last
N-M columns are discarded. The first row (d=0) is a7t 2: a (m=1).

The signals, however, are shifted by t units. If t:elreceiver can
store the N complex numbers {X(fk)}, there 1s no synchronization problem
since expression (9) holds with t = 0. The signals are extracted with
no delay if the receiver can store or compute {x(fk)}. Note that the
transforms in (7) and (8) can be efficiently computed using the FFT
algorithm.

For applications where M = N and fs>>f°, then the output of the
Fourier transform in (8) must be shifted back to the (O,fs/2) band and

then smoothed by a low pass filter in order to increase the output SNR.

The SNR will be fs/fOD if the filter bandwidth is fo.

4. Comparison with Time Division Multiplexing

The lagged product sequence {c;zx(n)x(n-d)} can be thought of as
an ensemble of sinusoidal carriers with frequencies 0<f<fs, unit amplitudes
and random phases. The SNR for each signal is 02/02'

Using no security processing, suppose that the signals were time
division multiplexed using a unit amplitude carrier. In order to achieve
the output SNR of N/4DM, each signal would have to be repeated ;iN/4DM
times. Consequently, at most 4Do;2 messages of length M could be
multiplexed using a N long sequence, and thus the quadratic method handles
more signals when o:<4.

In any event, the quadratic method is secure. This security is
achieved at the cost of computing ND FFT's during de-multiplexing.

These FFT's can be performed by the main frame CPU for computer to

computer communication.




S e

Consider the following example. Let oi il oz = 103, M= 102,

and D = 103. The SNR for each :ignal is -30db. If N = 5x106, then the

output SNR of each of the 103 de-multiplexed signals is 11db (N/4DM = 12%

and 0: << N).

Rather than computing the DM array {sd(m)} by using DN FFT's, the

double Fourier transform of x(fj)x(f )P*(fk) can be computed for

k-j
d=1,...,Dand m = 0,...,M-1 by DMNlogzN arithmetic steps using the
idea behind the radix 2 FFT algorithm. The computations can be organized ?;

in a sequential manner so that the entire NxN array of the triple product

does not have to be stored.

As a final note, another signal can be transmitted with no inter-
M-1
ference with the p signals by adding E:qo(n)x(n~m) to y(n). This
m=0
1inear component is uncorrelated with y(n). Thus the Q)(n) signal can

be extracted by taking the Fourier transform of the sample cross spectrum

between {x(n)} and {p(n)}. The SNR is the same as that for the other ;

signals. |
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Appendix

D
Theorem 1. The spectrum Sy(f) of {y(n)} is E: |Ad(f)|2
d=1

of {p(n)} is Sy(f) + oz.

k(N) = N

EX(f )X(fk)x(fz) = 0. Applying these results to (5),

]

- D * _1N=1 N-1
el TR WD W WA TS L R 3
r=1 s=1 j=0 £=0

2.
on

o
expiZn(fzs - fjr)ox EN (fk_j)x(fj

For large N, it follows from properties 2, 3 and 4 that

-2 * * 4
EN X(fk_j)x(fj)x (fk_z)x (f£) .o if j = £ # k/2

-3 1t §= =2
X

= 0 otherwise.

3 £ k(N) , ¢ 45 N+=. As is shown in [2], Sy(f) = lim N'llY(fk(N))l

*
)X (£, _

. The spectrum

Proof: For each f, there exists a sequence k(N) such that

2

N
In order to derive this limit, note that EN-llX(fk)l2 = oi and thus

Sx(f) = ci. Moreover by properties 3 and 4 (Introduction),

*
L)x (fl). (Al)

or j +£=k

(a2)

Consequently, most of the cross terms in the second double sum are zero.

5 D
Applying (A2) to (Al), N 1|Y(fk(u))|2 -+ E: |Ad(f)|2 as N+ since
d=1

N-1 1k
) expi2nf, (s-r) =0 if r # s, and lim N i‘ expi2nf
§=0 Moo §=0 3

(r+s) = 0. When

the signals are realizations from independent Gaussian white noise

processes, lA.d(f)]2 = Moi. ‘The spectrum of {p(n)} is Sy(f) + o: since

the errors are independent of the x's.
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Theorem 2. Expression (9) holds. The error variance is approximately

loN-l(DMoi + 02) for large N. Thus the output SNR is N/4DM.

Proof: First consider the case 1 = 0. From (5) and (A2),

D
=23 * 3 *
o AN TEX(E)X(E, )P (£) d‘;lAd(fk) (expi2nt d + expi2n,_.d)
D (A3)
= Z A*(f ) (expi2nf d + expi2wf d exp(-i2nf d)
d=1 d k'™ 3 k j
D
if j # k/2. When j = k/2, the expected value is 3 , A (f )expi2rf ,.d.
N~-1 d=1 d' 'k k/2
Since Z exp(—i.anzjd) =0 for each d = 1,..., N-1, it follows from
j=0

(7) and (A3) that for t = 0 and d>0,

N-1
1 x(fj)x(fk_j)P*(fk)exp(-iznfjd)

3=0 '

= A%(f,) + 0(DM/N) i (a4)

* -2
EW, (k)P (.fk) =N

D
-1
since N dZIAd(fk)expiZﬂfk

/2d is of the order O(DM/N).

Transforming (A4) into the time domain as shown in (8),
Esd(m)-ad(m) m=0,...,M -1 (AS)

D
for large N. When d = 0, Es_(m) = ZN-1 Z a,(m).
0 d=1 ¢
When 1 # 0, the right hand side of (A4) is multiplied by
expianjr expiz-nfk__jt = expiwakt. Thus Esd(m) = ad(m-r) plus an
error whose distribution will now be derived using the stochastic

assumptions for the signals.

RS R AR el S NGRS s shan et 4 e s el sl
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The next step is to derive the asymptotic distribution of the

a3 %
errors s, - Esd. The term B(j,k) = N 1x(fJ)X(f )P (fk) is the sample

k-j

cross bispectrum at fk between {x(n)} and the received signal. As is

shown by Rosenblatt and Van Ness [3], the variance of B(j,k) is

j j)S (f ; By Theorem 1, Sp(f) = DMoi < 02. Thus

2
Var B(j,k) = Nox(DMca + oe).

NS (f )S (f

For large N the B(j,k) variates are uncorrelated in the triangular
region {j = 0,...,[k/2]); k = 0,...,N-1}. This trianglé is-called the
principal domain of B(j,k). The following symmetries relate the
B(j,k)'s outside this domain to those in the domain:

B(k/2 + £, k/2 - £) = B(k/2 - £, k/2 + £) for k even,
B((k-1)/2 + £, (k+1)/2 - £) = B((k+1)/2 - £, (k-1)/2 + £) for k odd, and
B*(N-j,N-k) = B(},k). Thus there are approximately N2/4 degrees of
freedom fér the B(j,k)'s in the square {j = 0,...,N -1; k = 0,...,N - 1}.
Expression (8) can be rewritten as follows:
N-1 N-1
(m)'(NO% = ? Y B(j,k)exp[-1i2n(f

370 k=0 2 =2 2
theorem, the variance of sd(m) is Ao

d+f m)] By the central limit
VarB(j,k) = 4N (DMo> + cz). The

factor 4 results from the symmetries of the B(j,k) in the double sum.

Moreover, the sd(m) are uncorrelated for large N by the orthogonality

inherent in Fourier transforms (property 3).
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Footnote
1. Simple whiteness is not sufficient to obtain the asymptotic results
used in this paper. Assume, in additiom, that Ex(nl)x(nz)x(n3) = 0;
2 2 4
Ex (nl)x (nz) Oy if ny ¢ ny; and Ex(nl)x(nz)x(n3)x(na) = 0 if
n, ] n, ¢ n, # a,- These conditions hold if the process is Gaussian.
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